Confocal spectromicroscopy of amorphous and nanocrystalline tungsten oxide films

A. Kuzmin *, R. Kalendarev, A. Kursitis, J. Purans

Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia

Available online 27 March 2007

Abstract

A Raman confocal spectromicroscopic system was used to study in situ phase composition and surface morphology in amorphous and nanocrystalline tungsten oxide and tungstate thin films, prepared on silicon and glass substrates by dc magnetron co-sputtering technique. The possible use of these films for the phase-change optical recording was demonstrated using 442 nm He–Cd laser with a variable power of up to 50 mW. The formation of nanocrystalline tungsten trioxide or tungstate phases was observed under the laser irradiation. These nanocrystalline phases show relatively strong Raman activity, which can be used for information reading purposes. A multilayer structure composed of several tungstate films with different chemical composition is proposed as potential write-once optical recording media.

© 2007 Elsevier B.V. All rights reserved.

PACS: 87.64.Tt; 78.30.Ly; 68.55.–a; 42.79.Vb

Keywords: Phonons; Raman scattering; Sputtering; Laser–matter interactions; Photoinduced effects; Raman spectroscopy

1. Introduction

Recent advances in optical recording technology are strongly related to an invention of blue-wavelength diode lasers and a development of compatible storage media [1]. Today an optical recording capacity of more than 25 GB per recording layer is achieved in ‘Blu-ray’ disks by using a laser with the wavelength of 405 nm, focussed through a high numerical aperture objective lens to a spot size of about 300 nm [2,3]. Such systems operate using the phase-change recording technology, i.e. laser-induced amorphous-to-crystalline phase transition in inorganic alloy films. The amorphous and crystalline phases have a different refractive index, that allows information readout using amplitude and/or phase modulation of the reflected laser. When a transition between the crystalline and amorphous phase is reversible, an information can be erased and/or overwritten many times.

The most frequently used rewritable phase-change recording materials, ternary GeSbTe and quaternary AgInSbTe alloys, belong to the group of semiconductor chalcogenides [1,4,5]. However, other compounds are subject of continuous investigation for optical recording media [4]. In particular, tungsten oxide, well known for its electrochromic properties [6], was studied in [7–11]. The use of a reversible photoredox reaction under two-wavelength laser excitation of tungsten oxide in air was proposed for optical memory media in [7,8]. The reflectance change upon heat treatment of WO3/metal thin-film bilayered structures was studied in [9]. Rewritable electrically selective multilayered optical recording disk, based on the electrochromic behavior of WO3, was suggested in [10]. Finally, the possibility for write-once optical recording was demonstrated in WO3 film, fabricated by the pulsed laser deposition [11].

In this work, we report on the Raman confocal spectromicroscopy study of amorphous and nanocrystalline tungsten oxide films.
tungsten oxide and tungstate thin films for the use as phase-change write-once optical recording media.

2. Experimental

Pure tungsten oxide WO_3 and tungstate NiWO_4 and ZnWO_4 thin films (t.f.) were produced from metallic tungsten (99.95%), nickel (99.0%) and zinc (99.9%) targets by reactive magnetron co-sputtering in a plasma-focusing dc magnetic field [12,13]. A gas mixture of argon (80%) and oxygen (20%) was used as the sputter atmosphere. The sputter deposition was performed on silicon and glass substrates at a total gas pressure in the chamber about 6.7 Pa and a discharge power 100 W. The thickness of the films was about 300–500 nm. All ‘as-deposited’ thin films were X-ray amorphous.

All spectromicroscopic experiments were performed at room temperature using a 3D scanning confocal microscope with spectrometer ‘Nanofinder-S’ (SOLAR TII, Ltd.) [14]. The ‘Nanofinder-S’ system consists of an inverted Nikon ECLIPSE TE2000-S optical microscope connected simultaneously to a laser confocal microscope unit with high-sensitivity Hamamatsu R928 photomultiplier tube (PMT) and to a monochromator-spectrograph (SOLAR TII, Ltd., Model MS5004i) with attached Hamamatsu R928 PMT detector and Peltier-cooled back-thinned CCD camera (ProScan HS-101H, 1024 × 58 pixels). The color video CCD camera (Kappa DX20H) is used for optical image detection through the microscope. The image scanning is performed in the X–Y directions by galvanometer mirror scanners and in the Z direction by a piezo-scanner. A He–Cd laser (441.6 nm, 50 mW cw power) is used for scanning and spectroscopic measurements. All confocal images were obtained using the laser power about 15 mW and a pinhole of about 50 μm, whereas the higher laser power (25 mW or 50 mW) was used for recording. The measurements were performed through Nikon Plan Fluor 40 × (NA = 0.75) optical objective. The Raman spectra were recorded using 600 grooves/mm diffraction grating with a resolution of about 3–4 cm$^{-1}$ using the monochromator with 520 mm focal length and the edge filter to eliminate the elastic component.

3. Results and discussion

The confocal image and the corresponding Raman spectrum of the ‘as-deposited’ tungsten oxide thin film are shown in Fig. 1(a) and Fig. 2(b), respectively. The Raman signal consists of two weak bands, being typical for the amorphous tungsten trioxide (a-WO$_3$), whose structure is mostly composed of distorted [WO$_6$] octahedral groups joined by corners [12]. The broad band at 750 cm$^{-1}$ is due to the stretching modes O–W–O of the bridging oxygens, and the band at 950 cm$^{-1}$ is due to the stretching mode of the terminal W=O bonds [15]. Note that the last band is strongly overlapped with the second order Raman scattering from silicon substrate.

By using the 25 mW laser power, the rectangular image was recorded on a-WO$_3$ film and was clearly observed after that in confocal mode (Fig. 1(b)). At the same time, the corresponding Raman signal remained nearly unchanged (Fig. 2(c)), indicating that only few atomic layers close to the film surface were modified during writing process. Our experiments show that thus recorded image is unstable for a long time exposition of the film in air even at room temperature and can be completely bleached during the time from several minutes to several days. Similar effect has been observed by us previously in freshly ground polycrystalline WO$_3$ powders [16], where it was associated with a formation of metastable surface color centers, attributed to the reduced tungsten ions.

An increase of the laser power to 50 mW results in a-WO$_3$ thin film local crystallization, occurring normally above 400°C. The crystalline regions show good contrast in confocal image (Fig. 1(c)) and exhibit the Raman signal with two strong bands at 712 cm$^{-1}$ and 806 cm$^{-1}$ (Fig. 2(d)), being due to the stretching modes O=W–O of the bridging oxygens [15]. However, some broadening of the bands and the ratio between two bands indicate [16] that crystallites have a size about one-two hundred nanometres.

The divalent transition metal tungstates AWO$_4$ with wolframite-type structure are members of a large family of structurally related compounds with the A$^{2+}$ ion being Mg, Mn, Fe, Co, Ni, Cu or Zn. The wolframite structure consists of a hexagonal close-packed oxygen array in which...
one-half of the octahedral holes are occupied by metal ions. The cations distribution gives rise to zigzag chains of skew-edge linked octahedra, and any single chain contains only one type of cation. The chains are arranged in alternating layers, which are connected by corner-sharing octahedra to the chains containing cations of another type. Note that there exists also another type of tungstates with scheelite structure (e.g. CaWO$_4$, BaWO$_4$, SrWO$_4$), in which tungsten ions are four-fold coordinated and the A$^{2+}$ ions have eight oxygen neighbors.

Recently tungstates have attracted large attention as promising Raman shifters [17] due to the tungsten–oxygen bonds exhibit high internal vibration frequencies [18,19]. Besides, we have also found that NiWO$_4$ thin films [13] show electrochromic properties comparable to that of pure a-WO$_3$.

The ‘as-deposited’ NiWO$_4$ films are amorphous (a-NiWO$_4$) or consist of crystallites, having a few nanometres size [13,20]. In fact, such films (Fig. 3(a)) do not show any significant Raman signal (Fig. 4(a)). After optical writing by laser with 25 mW power, the a-NiWO$_4$ films exhibit behavior similar to that of pure a-WO$_3$: only very upper atomic layers close to the surface are affected by a formation of metastable color centers incorporating reduced tungsten ions, whose presence appears as a change in the reflectivity (Fig. 3(b)), but is not visible in the Raman signal (Fig. 4(b)). However, an increase of laser power to 50 mW results in the NiWO$_4$ thin film partial crystallization and in an appearance of Raman bands typical to wolframites [18–20]. In particular, the strongest internal mode becomes visible at 891 cm$^{-1}$. The crystalline region of the film is well observed in confocal image (Fig. 3(c)). The annealing of the film at 700 °C for 4 h (Fig. 4(d)) results in complete crystallization and a rise of all bands found in crystalline NiWO$_4$ [18].

The behavior similar to NiWO$_4$ material is also observed in ZnWO$_4$ films (Fig. 5). The ‘as-deposited’ ZnWO$_4$ films show no significant Raman activity, whereas a well visible band at 907 cm$^{-1}$ appears after optical writing by laser with 50 mW power. The annealing of the ZnWO$_4$ film also leads to complete crystallization and an appearance of the bands typical for crystalline ZnWO$_4$ [18,19].

Thus, two effects are observed in tungsten oxide and tungstate films under optical recording. When laser power is below crystallization threshold, a reduction of tungsten...
ions at the film surface occurs leading to the change in the reflectivity, but no change in the Raman response. Due to high activity of such color centers, their life time in air is limited. However, when laser power exceeds the threshold value, the film becomes nanocrystalline showing, additionally to the reflectivity change, rather strong Raman response due to significant strength of highly covalent W–O bonds. Therefore, we propose to use the intensity and position of the Raman band due to the highest stretching vibrational O–W–O mode for information reading. Moreover, since the band position can be controlled by changing the chemical composition of tungstate thin film and to the fact that tungstates are wide band-gap materials [21–23], thus are transparent in the visible range and composed of several tungstate films with different chemical composition, can be prepared and is proposed as potential write-once optical recording media.

4. Conclusion

Amorphous and nanocrystalline tungsten oxide WO₃ and tungstate NiWO₄ and ZnWO₄ thin films have been studied by the confocal Raman microscopy. The 442 nm He–Cd laser with a cw power up to 50 mW has been used for Raman scattering excitation, optical imaging and recording. Two mechanisms of optical recording have been demonstrated. The possibility of the photochromic writing, having short life-time memory effect, has been shown for amorphous films under weak laser irradiation (below 25 mW). The phase-change write-once recording has been performed at 50 mW laser power. It results in the formation of nanocrystalline tungsten trioxide or tungstate phases, having relatively strong Raman activity. Since tungstates belong to wide band-gap materials [21–23], a multilayer structure, which is transparent in the visible range and composed of several tungstate films with different chemical composition, can be prepared and is proposed as potential write-once optical recording media.

Acknowledgements

This work was supported by the Latvian Government Research grants (05.1714 and 05.1717) and National Research Program in Materials Science.

References