Raman and infrared spectromicroscopy of manganese oxides

N. Mironova-Ulmane$^{a, *}$, A. Kuzmin$^a$, M. Grube$^b$

$^a$ Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
$^b$ Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd. 4, LV-1586 Riga, Latvia

Abstract

Confocal micro-Raman and micro-FT-IR spectroscopies have been used to probe the phase composition of nominally pure single-crystal MnO and mixed MnO–Mn$_3$O$_4$ samples, grown by the method of chemical transport reactions on MgO(1 0 0) substrate. The presence of spinel Mn$_3$O$_4$ phase has been clearly detected in both samples by Raman and FT-IR spectroscopies. The size of the spinel Mn$_3$O$_4$ phase regions has been estimated to be below 20 µm.

1. Introduction

Manganese oxide (MnO) having a rock-salt structure is a classical antiferromagnet [1] ordered below about 118 K. While being studied for a long time, it still attracts much experimental and theoretical interest [2,3], which has been recently extended to nanostructured MnO [4–7]. It is known that magnetic properties of MnO are strongly affected by the presence of the spinel-type Mn$_3$O$_4$ impurity phase [4,7,8], which is ferrimagnetic below about 43 K. Therefore, it is important to control the phase purity of MnO.

Hausmannite Mn$_3$O$_4$ exists in two forms: low-temperature tetragonal and high-temperature cubic with a transition occurring at about 1170 °C [9]. Besides, it was found that the cubic Mn$_3$O$_4$ phase stabilizes at room temperature in films grown by MOCVD on single-crystal MgO(1 0 0) substrate [10].

Among different experimental techniques the micro-Raman spectroscopy is a useful tool to study non-homogeneous samples. It combines the ability to scan a sample with micro-level lateral resolution and the possibility to distinguish different Raman-active phases, thus providing the information on phases distribution across the sample. A micro-FT-IR spectroscopy can also be used as a complementary method.

In this work we have performed confocal micro-Raman and micro-FT-IR spectroscopies of nominally pure single-crystal MnO and mixed MnO–Mn$_3$O$_4$ samples, which were epitaxially grown by the method of chemical transport reactions from polycrystalline MnO source on MgO(1 0 0) substrate.

2. Experimental

Polycrystalline MnO and Mn$_3$O$_4$ were prepared by thermal decomposition of oxalate or manganese carbonate in vacuum and in air, respectively, in the temperature interval 340–570 K [11,12]. Single-crystal MnO (manganosite) and Mn$_3$O$_4$ (hausmannite) were epitaxially grown by the method of chemical transport reactions from polycrystalline sources on single-crystal MgO(1 0 0) substrate using the “sandwich” technique [11]. The MgO(1 0 0) substrate was placed at about 1 mm above the polycrystalline source. The substrate temperature was maintained at 1150–1200 K, and the temperature difference between the substrate and the source was 50–100 K. The hydrogen chloride (HCl) gas at the pressure 40–60 mm Hg was used as a transport medium. The growth rate was about 0.03–0.1 µm/s.

The samples were characterized by X-ray diffraction. The experiments were performed at room temperature using the diffractometer DRON UM-2. The X-ray tube with an iron anode (Fe Kα) was used as an X-ray source. The tube operated at 50 kV and 20 mA. To discriminate phase content in oriented samples, the 2θ scans was performed in the interval from 100 to 140, which includes contributions from MgO(4 0 0), MnO(4 0 0) and Mn$_3$O$_4$(2 0 0) reflections. More details can be found in Ref. [11].

Raman spectra were collected at RT using a confocal microscope with spectrometer “Nanofinder-S” (SOLAR TII, Ltd.). The “Nanofinder-S” system consists of an
Optical and confocal spectromicroscopy of nominally pure single-crystal MnO and mixed MnO–Mn3O4 samples. Optical images (size $222 \mu m \times 165 \mu m$) were obtained using bright field illumination. Confocal and spectral images have a size $275 \mu m \times 330 \mu m$. Spectral images show a variation of the $660 cm^{-1}$ Raman band intensity. (For the interpretation of the references to colour in Fig. 2 legend, the reader is referred to the web version of the article.)

The FT-IR measurements were performed at room temperature using a Bruker Vertex 70 spectrometer equipped with the Hyperion 2000 IR microscope. The reflectivity FT-IR spectra were registered in the range from 400 to 4000 cm$^{-1}$ by liquid nitrogen cooled MCT detector. The measurements were performed using attenuated total reflection (ATR) and IR (15×) objectives for point and mapping acquisition modes, respectively.

### 3. Results and discussion

X-ray diffraction measurements of two samples did not reveal the presence of Mn3O4 in nominally pure single-crystal MnO, but indicated unambiguously the co-existence of two (MnO and Mn3O4) phases in the mixed sample.

In Fig. 1 one can see the optical and confocal images of nominally pure single-crystal MnO and mixed MnO–Mn3O4 samples. The optical image of nominally pure MnO is dominated by green colour; however, reddish-brown colour can be observed in some points mostly homogeneously distributed across the sample: it is attributed to the presence of the Mn3O4 phase. On the opposite, the reddish-brown colour dominates in mixed MnO–Mn3O4 samples.

It is known that MnO phase with a NaCl-type structure is a weak Raman scatterer. Its Raman signal consists of two broad asymmetric bands at about 530 and 1050 cm$^{-1}$, of which only the first one has been attributed previously in Refs. [15,16] to 2TO mode. One should note that MnO is similar to another antiferromagnetic material NiO, which has a high Neél temperature around 523 K and those Raman signal is rather well understood [17]. The two oxides have

---

Fig. 2. Representative room temperature Raman spectra of (a) tetragonal hausmanite Mn$_3$O$_4$, (b, c) mixed MnO–Mn$_3$O$_4$, (d, e) nominally pure single-crystal MnO, and (f) single-crystal NiO. Spectra (b) and (d) were taken in reddish-brown coloured points of optical images in Fig. 1, whereas spectra (c) and (e) correspond to greenish coloured points.
also close values of the lattice parameters ($a$(MnO) = 4.446 Å and $a$(NiO) = 4.176 Å [3]), therefore one can expect some similarity in their Raman signals. In NiO (Fig. 2(f)) there are five vibrational bands: one-phonon (1P) TO (at 440 cm$^{-1}$) and LO (at 560 cm$^{-1}$) modes, two-phonon (2P) 2TO modes (at 740 cm$^{-1}$), TO + LO (at 925 cm$^{-1}$) and 2LO (at 1100 cm$^{-1}$) modes [17]. Comparing Raman signals in NiO and MnO one can attribute the lowest band at 530 cm$^{-1}$ to the LO mode, predicted theoretically at about 484 cm$^{-1}$ in Ref. [18] or 500 cm$^{-1}$ in Ref. [19]. The highest frequency band at 1050 cm$^{-1}$ has complex origin: it envelops two bands related to the TO + LO (a band wing at 950 cm$^{-1}$) and 2LO modes. The intermediate band due to the 2TO modes has weak intensity and is masked by a narrow band contribution at 660 cm$^{-1}$ being due to the Mn$_3$O$_4$ phase.

The Raman signal in tetragonal hausmannite Mn$_3$O$_4$ (Fig. 2(a)) consists of a very sharp peak at about 660 cm$^{-1}$ and two smaller peaks at about 318 and 370 cm$^{-1}$ [20,21]. Similar to bulk Mn$_3$O$_4$ spectra, small peaks at about 318 and 370 cm$^{-1}$ of the Mn$_3$O$_4$ films [22], powders [23], nanocrystals [24,25] and nanorods [26].

The confocal spectromicroscopy results for nominally pure single-crystal MnO and mixed MnO–Mn$_3$O$_4$ samples are shown in Fig. 1. In these experiments two images (confocal and spectral) have been acquired simultaneously by two PMT detectors. The confocal image gives a variation of the reflected laser light intensity, whereas the spectral image shows the variation of the 660 cm$^{-1}$ Raman band intensity. The presence of the Mn$_3$O$_4$ phase is well evidenced in both samples. This result has been confirmed by the reflectivity FT-IR measurements using the mapping at the characteristic Mn$_3$O$_4$ IR band, located at about 566 cm$^{-1}$.

4. Conclusions

Confocal micro-Raman and micro-FT-IR techniques were used to probe the phase composition of nominally pure single-crystal MnO and mixed MnO–Mn$_3$O$_4$ samples, grown by the method of chemical transport reactions on MgO(1 0 0) substrate. We found that nominally pure single-crystal MnO contains an admixture of spinel Mn$_3$O$_4$ phase. The sizes of the spinel Mn$_3$O$_4$ phase regions are below 20 µm. This result indicates that micro-Raman technique is a useful tool to control the phase purity of manganese oxide MnO.

Acknowledgements

This work was partially supported by Latvian Government Research Grants Nos. 05.1717, 05.1718 and 04.1100.

References