Local Structure Studies of Ti for SrTi16O\textsubscript{3} and SrTi18O\textsubscript{3} by Advanced X-ray Absorption Spectroscopy Data Analysis

A. ANSPOKS,1,* J. TIMOSHENKO,1 D. BOCHAROV,1 J. PURANS,1 F. ROCCA,2 A. SARAKOVSKIS,1 V. TREPAKOV,3,4 A. DEJNEKA,4 AND M. ITOH5

1Institute of Solid State Physics, University of Latvia, Riga, LV-1063, Latvia
2IFN-CNR, Institute for Photonics and Nanotechnologies, Unit ‘FBK-Photonics’ of Trento, Povo (Trento), Italy
3Ioffe Physical-Technical Institute RAS, St-Petersburg, Russia
4Institute of Physics, AS CR, Prague, Czech Republic
5Tokyo Institute of Technology, Japan

\textit{Strontium titanate is a model quantum paraelectric in which in the region of dominating quantum statistics the ferroelectric instability is inhibited due to nearly complete compensation of the harmonic contribution into ferroelectric soft mode frequency by the zero-point motion contribution. The enhancement of atomic masses by the substitution of 18O for 16O decreases the zero-point atomic motion and low-T ferroelectricity in SrTi18O\textsubscript{3} is realized. In this study we report on the local structure of Ti in SrTi16O\textsubscript{3} and SrTi18O\textsubscript{3} by Ti K-edge extended x-ray absorption fine structure measurements in temperature range 6 – 300 K.}

Keywords Strontium titanate; quantum paraelectric; isotopic effect; X-ray absorption spectroscopy; local atomic structure; phase transitions

Introduction

Strontium titanate (SrTiO\textsubscript{3}, STO) is a well-known and thoroughly studied model that is representative of the family of ABO\textsubscript{3} oxides and related materials [1]. At room temperature it has the cubic O_{h}^1, perovskite-type structure. Upon cooling STO undergoes a second order $Pm\text{3}m$ (O_{h}^1) to $I4/mcm$ (D_{4h}^{18}) antiferrodistorsive (AFD) phase transition (PT) $T_C = 105$ K with condensation of the R_{25} phonon mode at the Brillouin zone boundary [2, 3]. Following the Barrett formula [4, 5] the dielectric permittivity at first rises strongly upon cooling due to softening of the lowest TO\textsubscript{1} phonon mode (incipient ferroelectricity). At low temperatures, where the quantum statistics dominates the rising of dielectric permittivity saturates and the ferroelectric ordering is suppressed by quantum effects. The paraelectric phase of STO is retained down to the lowest temperatures (quantum
paraelectricity [5, 6, 7]). This leads to the idea that ferroelectricity in STO can be induced by suppression of the quantum fluctuations. Experimentally, this was observed using isotope exchange (16O with 18O) [8].

There is long debate about structure of polar phase and mechanism of the phase transition in SrTi18O$_3$. The first mechanism proposed was the displacive type, caused by the condensation of the ferroelectric E_u soft mode [9, 10, 11, 12], the second was the addition of an order-disorder type component to the displacive soft mode one [13, 14, 15, 16].

The structure of STO has been studied by different experiments: X-ray diffraction (XRD) [17, 18], neutron diffraction [19, 20] and X-ray absorption spectroscopy [21, 22, 23, 24, 25, 26, 27, 28] but clear picture and consistence of opinions have not been achieved still.

In this work the local atomic structure around Ti in SrTi16O$_3$ and SrTi18O$_3$ is studied in the temperature range 8 – 300 K with X-ray absorption spectroscopy methods, namely extended x-ray absorption fine structure (EXAFS), advanced reverse Monte Carlo (RMC) and evolutionary algorithm (EA) techniques for EXAFS data analysis (RMC/EA-EAXFS) [29].

Experimental

In our study we used two powder samples: standard SrTi16O$_3$ (STO16) with 100% 16O (STO16) and SrTi18O$_3$ (STO18) where 96 % of 16O atoms were substituted by 18O isotope. STO18 sample crystals preparation procedure has been previously described in ref. [9].

The Ti K-edge x-ray absorption spectra were measured in transmission mode at the ESRF bending-magnet beamline BM23 and at the HASYLAB/DESY A1 bending-magnet beamline in the temperature range 8 K – 300 K. The x-ray radiation was monochromatized by a 40 % detuned Si(111) double-crystal monochromator, and the beam intensity was measured using two ionization chambers filled with argon and krypton gases. The temperature of the sample was stabilized on ± 0.1 K with He flow cryostat. To achieve the best sample homogeneity and thickness at the Ti K-edge, necessary for transmission mode experiments, the proper amount of the STO powder was deposited on polytetraflouroethylene Millipore membranes from suspensions in methyl alcohol.

The Extended X-ray absorption fine structure (EXAFS) oscillations data $\chi(k)$ were extracted following the conventional procedure [30, 31] using the EDA software package [32].

The extracted STO16 EXAFS spectra $\chi(k)k^2$ and corresponding Fourier transforms are shown in Fig. 1. Spectra of STO18 and STO16 look very similar, as it was expected since difference in the structure between STO18 and STO16 is very small [8]. The peak of the first coordination shell (is seen in Fourier transform between 1 and 2 Å) contains only the single scattering signals. The peaks located between 2.5 and 4 Å correspond to the second (Sr atoms) and the third (Ti atoms) coordination shell of Ti, which are very close and cannot be separated; moreover they contain multiple scattering contributions from different Ti-O-Ti chains and triangles. At the same time, one can see that that Ti-Sr contribution is very sensitive towards temperature, unlike the ones from Ti-Ti and Ti-O.

RMC/EA-EAXFS Simulations

The best method to analyze these data is reverse Monte Carlo (RMC) and evolutionary algorithm (EA) techniques for EXAFS data analysis (RMC/EA-EAXFS) [29]. The
method does not restrict the geometry of the system (in our case no limitations to the distortions of the oxygen octahedra and positions of Ti and Sr atoms in it) and takes into account all multiple scattering effects, which are very sensitive to the bonding angles and distances, e.g. in Ti-O-Ti chains and triangles.

In RMC/EA-EXAFS simulations we used 32 supercells, where each supercell with size $4a \times 4b \times 4c$ contains 1280 atoms. Lattice constants a, b and c were taken from diffraction studies [20].

Comparison of the experimental and theoretical EXAFS spectra has been performed using a Morlet wavelet transform (WT) [33, 34] in $3 \text{ Å}^{-1} – 16 \text{ Å}^{-1}$ of the k-space, and $0.9 \text{ Å} – 4.5 \text{ Å}$ of the R-space range.

Being a straightforward mathematical procedure as the Fourier transform, the WT allows one to obtain a two-dimensional representation of the periodic signal with simultaneous localization in k and R spaces that is an advantage over conventional fit in k or R
space only. In the case of STO for instance, WT allows one to discriminate contributions from Ti-Ti and Ti-Sr atom pairs. From Fig. 2, one can directly see, for example, that Ti-Sr contribution, unlike the one from Ti-Ti and Ti-O, is very sensitive towards temperature. Also differences between STO18 and STO16 spectra can be better noticed using the WT method then the standard EXAFS analysis methods (Fig. 2.).

Usage of WT for data fitting in our case has also the advantage that it allows to better separate the contribution to the total EXAFS of the first coordination shell (Ti-O) from the noise due to imperfections in background subtraction procedure.

Scattering paths with the half-path length up to 5.5 Å and the multiple-scattering contributions up to the third order were considered in our simulations. The calculation of the cluster potential was performed only once for the average atom configuration, corresponding to the SrTiO₃ crystallographic structure. The complex exchange-correlation Hedin-Lundqvist potential and default values of muffin-tin radii, as provided within the FEFF8 code [35], were employed. As the output of RMC/EA-EXAFS analysis we have obtained a set of atomic coordinates, which can be used to calculate radial distribution functions, average distance between atoms, MSRD, and other values.

Figure 2. Wavelet analysis of Ti K-edge EXAFS data for STO16 and STO18 at selected temperatures, performed using Morlet wavelet transform.
Figure 3. RDF for the first coordination shell of Ti (Ti-O).
Results and Discussion

The obtained shapes for Ti-O radial distribution function (RDF) are shown in Fig. 3, where two distinct groups of the oxygen atoms separated by about 0.1 Å are recognizable in the first coordination shell of Ti for STO18 in the whole range of temperatures.

At the same time, the RDF for STO16 contains less pronounced features: the non-Gaussian shape of the Ti-O RDF remains in the whole range of the temperatures.

Evidence of similar distortions was previously documented for STO by Fisher et al. [21] and for BaTiO₃ by Ravel et al. [36].

On the contrary, the presence of a single dominating distance between Ti-Ti is evident in Fig. 4: this is a sign of strong correlation between neighboring Ti atoms.

The RDF corresponding to the distribution of Ti-Sr distances shows strong temperature dependence (Fig. 5). The shape of the RDF does not change significantly; all features only flatten with the increase of the temperature, indicating increasing thermal disorder.

The mean-square relative displacement (MSRD) values are shown in Figs. 6 and 7. MSRDs are calculated as the second moment of the RDF. At the first glimpse one can see that all values do not follow classical Einstein-like temperature behavior, especially for STO18.

It is seen that the absolute values of Ti-O MSRD in the low temperature region for STO18 are larger than those for STO16. This confirms our previous studies using X-ray absorption near edge structure studies [37]. This is mainly due to the presence of the displacements of Ti atoms from the central position, as already documented by Ti-O RDF (Fig. 3).

Ti-O MSRD for STO18 shows a quite well distinguishable peak around 25 K, where transition to polar phase occurs. This can be a sign of fluctuations, leading to larger dynamic and/or static displacements of Ti in the oxygen octahedra.

Ti-Ti MSRD temperature dependence for STO18 and STO16 (Fig. 6) is nearly flat till 110K. Above AFD PT point it slightly increases and again remains nearly constant at least in the temperature range 150 – 250 K.

![Figure 4. RDF for the third coordination shell of Ti (Ti-Ti).](image-url)
Ti-Sr MSRD shows Einstein-like temperature behavior in the high temperature region corresponding to the cubic phase.

Ti-Sr MSRD for STO18 shows jump-like discontinuity at 25 K. Increased values at polar phase may be correlated with the observed increased static disorder for Ti. No anomalies are observed for Ti-Sr MSRD for STO16 in the low temperature region.

Figure 5. RDF for the second coordination shell of Ti (Ti-Sr).

Figure 6. MSRD values for first three coordination shells of Ti for STO18.
Conclusions

Obtained results show non-Gaussian character of the RDF for the first three coordination shells of Ti, especially the first shell in the whole temperature range studied (8 – 300 K).

We have found that there are well resolved two groups of oxygen atoms (separated by \(\sim 0.1\AA \)) in the Ti-O RDF in the first coordination shell of Ti in STO18, which remain in the whole range of the temperatures (from 8 to 300 K).

The same applies to STO16, but the corresponding distance between two groups of oxygen atoms is smaller.

The absolute values for the first coordination shell of Ti (Ti-O) MSRD in the low temperature region for STO18 are larger than those for STO16.

The MSRD values for the first coordination shell of Ti in STO18 have noticeable anomaly in the vicinity of the low-T phase transition into polar phase (25 K).

At the same time, there is a strong correlation between nearest neighboring Ti atoms (corresponding to the third coordination shell of Ti) for STO18 in the whole range of the temperatures (8 – 300 K), as it is seen in the shape of RDF and further supported by the constant MSRD value for STO18 Ti-Ti distances in between 8 – 106 K, and nearly constant value in the 150–250 K region. Ti-Ti MSRD values show noticeable anomaly around AFD PT in the 105 – 150 K region.

MSRD for Ti-Sr have the strongest temperature dependence with the Einstein-like temperature behavior in the high temperature region corresponding to the cubic phase. Ti-Sr MSRD for STO18 shows jump-like discontinuity at 25 K which may be correlated with the observed increased static disorder for Ti. No anomalies are observed for Ti-Sr MSRD for STO16 in the low temperature region.

The nature of these effects observed can be static or dynamic. These two effects cannot be separated by EXAFS data analysis since the small averaging time (\(10^{-15} \) s) of XAS technique [38].
It is important that our measurements revealed presence of some static and dynamic disorders in STO16, more pronounced in STO-18. It can be connected to precursor effect widely discussed today and to results by Golovenchits et al. [39]. It was suggested that a strongly frustrated state in STO at low temperatures is realized due to an interaction between the structural and ferroelectric order parameters. Such low temperature state of STO was treated as a critical one near the paraelectric-ferroelectric phase transition. In such scenario pronunciation of polar ordering precursor effects in STO-18 in comparison with STO-16 looks quite natural.

Acknowledgments

The authors thank Dr. Olivier Mathon from ESRF and Dr. Edmund Welter from DESY for assistance during the beamtimes, and Dr. Alexei Kuzmin for fruitful discussions and feedback.

Funding

This work has been supported by the Latvian Science Council grant no. 402/2012. The work was supported in part from large infrastructure SAFMAT Project CZ.2.13/3.1.00/22132, P108/12/1941 of GACR and PP RAS “Quantum mesoscopic and disordered systems”.

References

