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———=a Structural studies of Sr(Fe,Ti; ,)O; 5
solid solutions by XAS and Raman

spectroscopy

The perovskite solid solution series
SrlFe,Ti1_JOs_5, 0<x<1,isan
interesting system spanning the range
from slightly iron-doped SrTiO5 as a
model representative of acceplor-doped
large band gap electroceramics, to iron-
rich Sr(Fe,Tiy_JO3_g materials, which are
good elecironic and ionic conductors.
Such materials can serve as key
functional materials in fuel cells,
electrochemical sensors and permeation
membranes. In Sr(Fe,Ti,_JO4_5, the iron
substitutes for Ti4+ parily in the oxidation
state of Fe3+ and partly as Fe4+, the
actual Fe3+/Fe4+ fraction depending on
total iron concentration, oxygen partial
pressure, and temperature. The charge
compensation for Fe3+ occurs
predominantly by the formation of mobile
oxygen vacancies. For dilute Fe4+ centres
(high spin d4 configuration) a Jahn-Teller
distortion is predicted by quantum
chemical calculations [1]. The formation
of an iron impurity band occurs for iron
concentrations higher than about 3-10%
and represents a drastic change of the
electronic structure [1]. The iron in

metallic conducting SrFeQ; is known fo
have an undistorted octahedral
coordination. The transition between
these limiting cases is addressed in this
study.

For each Fe concentration an oxidised
(almost all Fe4+| and reduced (Fe3+)
sample was investigated. Fe and Ti
K-edge XAS spectra were recorded at
beamline BM29. EXAFS show different
local inter-atomic distances, for oxidised
samples, Fe4+-O2 distances are smaller
than halFHattice constants obtained by
XRD. Splitting of the first Fe4+-O2-
coordination shell was not observed
directly. However, for oxidised samples,
we observe an increase of the mean
square radial distribution [MSRD) with
decreasing x (Figure 105). For low x,
MSRD of Fe4+ is even larger than that of
Fe3+ for which oxygen vacancies are
present. These findings also remained in
low femperature measurements proving a
strong static disorder. All these
observations can be explained plausibly
by a local Jahn-Teller distorfion around
dilute Fe4+ centres.
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similar x where the iron impurity band
starts to form, which is consistent with the
absence of the Jahn-Teller distortion for
SrFe ;.

Although none of the individual
observations alone gives the final proof
of a Jahn-Teller distortion around Fe4+
ions, the combination of results obtained
by XAS, especially the iron concentration
dependence of the Fe4+-O2- MSRD,

and Raman speciroscopy strongly
supports its presence, most pronounced
for x ~ 0.03 and decreasing for higher
iron concentrations. The decrease of the
JahnTeller effect with increasing x can be
understood qualitatively by the change in
the electronic structure of the materials
from insulator to metal. A quantitative
modelling of the variation of the

Fig. 106: Raman spectra for
oxidised Sr{Fe,Tiy,]O3.

The spectra are scaled to
comparable intensity in the
200400 cm-! range and
shifted upward for clarity.
Boftom panel: reduced

St(Feg 0aTin.07)O2.085
sample.
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Fe4+—O2- MSRD and the intensities of the
Raman lines remains a challenging
theoretical problem.
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