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OUTLINE

1. Brief background to the work

2. X-SPM Bound state charge spectroscopy and imaging

3. Photon detection; at the limit of far field …towards 
SNOM.

4. Where to go with x-tip type work?
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1. BACKGROUND

Nano materials are complex. Properties 
depend on SIZE, SHAPE and  CHEMISTRY
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• Experimental science is lagging behind the 
prolific developments in synthesis and 
fabrication

• SPM is good for size, shape, local electrical 
spectroscopy and (bit less good) for photon 
detection…….also images on sub nm scale

• SR is good for local chemical information and 
structural information at the atomic level.

• There are compelling reasons to try to join 
these two ……open up SR to make major 
contribution to nanoscience.
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There are many detection modes for SPM

We have so far, concentrated on two for 
the x-ray excitation work.

Charge 

Photons
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Conventional XAFS

charge balanced fast (fs)

detect by absorption of 
primary beam or 
fluorescence 

How do we think about the link? 
(meV---100eV-------11000 eV)
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This work:

slightly less conventional XAFS in the detection mode.  
First: 0PTICAL

the primary interaction 
leads to local excitation 
of the bands (e-h)

The subsequent decay 
(luminescence ) can be 
detected.

This carries EXTRA 
electronic information
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Second: BOUND STATE CHARGE

the primary interaction 
leads to local excitation 
of the bands (e-h)

This causes charge 
transfer at a localised 
state (defect sate) 
associated with the 
parent atom. Not 
charge balanced.

Detect AFM, KFM

+
SPM tip
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Spectroscopy of bound state charge?

To get a spectrum the charge must increase and 
decrease as we scan through the core level 
absorption structure. 

True x-ray 
spectrum

q
Maybe 100 eV photons 
simply saturate or “lock 
up” the charge state.

Defect charge would be 
unaware of the edge 
structure.

q

E
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BOUND STATE CHARGE SPECTROSCOPY:

The electron 
population of the 
defect state must have 
(roughly) equal filling 
and emptying rates. 
Scanning the edge 
then perturbs the 
balance in a linear 
response mode.

It seems that this can 
be achieved with a 
resonance between EF
of tip and the bound 
state 

SPM tip 
Fermi energy
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photons 
(SNOM)

tip detected 
photo-electrons
(STM/AFM)

Coulomb
field
(KFM)

SR beam

tip detected 
EXAFS

nano image of 
x-ray data

Figure 1.  The overall experimental system proposed. The hardware development will be underpinned by software 
development for data transfer and analysis

ULTIMATE AIM
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2. CHARGE  MEASURENT

• Point defects at the Si-SiO2 interface

• Charge localisation at distorted single 
walled carbon nanotubes 
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The (111) Si-SiO2 surface; off line data 

600 Triangular islands driven by 7X7  reconstruction. Monolayer 
steps. Disorder on and between islands nucleates new island 

Voigtlander and Weber PRL, 
77, 3861

Toplogy image, 
charge (KFM) line 
scan (dark)

Visible laser

UV laser
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The afm likes to detect edges orthogonal to scan 
direction. The charge detection line scan was taken 
along a line known to be an island edge but in the 
scan direction.
Scan in UHV at 300 K

Pumping with lasers could change 
the events detected

UV laser tended to populate all 
seven…..stochastic influence

Scan long times and only see same 
seven sites.

Detect seven isolated point charge 
events.
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A Stesmans PRB 48 2418  
(1993)

M Ishii and B Hamilton: APL 85, (30) (2004)

These data suggest that the 
principle “dangling bond”
defect for the Si-SiO2 interface 
may be physically located at a 
step edge where oxidation is 
energetically more difficult 

The Pb Centre in 
Si, from EPR data
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Take AFM to the SRS and try 
to extend measurements to x-
ray excitation



ESRF X-Tip Nov. 05 18

AFM system installed on beamline MPW6.1 at 
the SRS, Daresbury, for KFM-EXAFS 
measurements.
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Initial Charge imaging
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Si L edge charge detected absorption data: step 
edge on the native oxide.

Locate charge and scan Si L edge 
get (noisy) spectrum, but we think 
a single charge involved. The data 
are a time average of a stochastic 
process. 

Two important new things 
emerged: (i) bias dependence, and 
(ii) energy location.
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BIAS:
We only get the spectral 
information for sample 
bias near to zero.

This is probably due to 
the resonant particle 
transfer process.

At very low bias the 
defect ground state is 
resonant with the tip 
Fermi energy.

Any other bias switches 
on sensitivity to 
secondary electrons
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The defect centre has a localising 
potential, placing the electron in  
bound state

All photoemission events associated 
with are shifted by this “band 
bending” effect

The probe singles out the localised 
charge effects and should therefore 
detect this.

This is the origin of the 2 eV shift 
observed

ENERGY
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SiOx spectrum dependent on probe position

chemial oxide

Native oxide

A. Brranco et al., JAP 97, 113714 (2005).



ESRF X-Tip Nov. 05 24

Charge localisation at distortions in single walled 
carbon nanotubes

Grown from Fe nanoparticle 
catalyst by CVD V der W 

attraction

Complex 
mechanics for 
separation
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Bending 
alone will not 
localise 
charge but 
twisting will 
(we think)

Topolgy, topolgy + charge, charge
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3. PHOTON DETECTION

Quick summary of where we are currently 
and where we are going
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Oxidised Si nanoclusters

Lu
m

in
es

ce
nc

e

X-ray excited 
luminescence is 
identical to laser 
excited

SiO2:

Window and 
detect 
absorption
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InGaN Single quantum wells, and single layer 
quantum dots: (not to scale!)

Excite luminescence Ga K edge; He temp.

Window on a band and measure exafs

sapphire sapphire

NOTE: these are single 2 and 0D layers, not thick 
epitaxy. Only one Ga atom in 5000 is in heterostructure
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Cr in sapphire

GaN exciton
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Beamline I811 
MaxLab
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EXAFS fits:

GaN, DAP..perfect GaN

QD…….poor fit to GaN. 
needs In atoms in second 
shell to fit and we can use 
these data to determine if In  
is clustered.
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Why can Ga edge EXAFS detect In on QD luminescence 
when there is only a tiny fraction of Ga atoms in the dot?

Because the exciton pumped by the x-rays do not form a 
“gas” they from a “solid”. At He T they trap instantaneously. 

So Ga atoms outside the dot contribute to the bound exciton 
band, the DAP band and the yellow band but not the QD 
band

sapphire
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CCD 

Filter wheel -
monochromator

Synchrotron 
light 

Objectives

Cryostat 
cold finger

Side-arm 
flip mirror

Sapphire 
window

z

x

y

Schematic of 
CLASSIX1

Chemistry, 
Luminescence
And
Structure of
Surface by micro-
Imaging
X-ray absorption

A joint project between 
CCLRC Daresbury
Laboratory and 
Manchester University.

N. Poolton,
B. Hamilton and
B. Towlson.

Micro-imaging XAS using optical detection methods
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CLASSIX1 on beamline 
XUV mpw6.1 at SRS 
Daresbury (40-450eV)

(above: happy users)

(Right: details of the machine, with blackout 
panels removed).
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Demonstration of the imaging area. The emission is from a 
high-purity SiO2 crystal. The luminescing area reflects the 
beam footprint.  XAS and emission are shown here for the 
single point “+”
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Micro-imaging InGaN
quantum dots. Sparse dot 
sample.

(left) The luminescence image 
clearly shows clumping of the 
dots, although there is low-level 
emission everywhere. 

(bottom) The emission and N 
edge ODXAS from a single 
bright spot. This is the same as 
from the weaker background.
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5. Where  do we go?

• SPM offers truly complementary style of 
measurement to PEEM

• existence theorem established 

• but need activity at SR facilities as well as 
academic labs.

• need versatility of measurement modes


