

Journal of Luminescence 72-74 (1997) 231-232

Near-infrared luminescence of isolated and exchange-coupled Ni²⁺ ions in Ni_cMg_{1-c}O solid solutions

N. Mironova^{a, *}, A. Kuzmin^b, J. Purans^b, V. Skvorçova^a

^a Nuclear Research Center, Latvian Academy of Science, LV-2169 Salaspils, Latvia ^b Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia

Abstract

 $Ni_cMg_{1-c}O$ (0.01 $\leq c \leq 1$) solid solutions were studied by near-infrared luminescence, optical absorption and X-ray absorption spectroscopies. It was found that Ni^{2+} ions form at c < 0.2 the exchange-coupled pairs, strongly bound via 90° super-exchange interactions, and are displaced at $c \leq 0.6$ to the 'off-center' positions. This explains the origin of the zero-phonon line splitting observed in the optical absorption and luminescence spectra. It was also found that the effective energy transfer from the single Ni^{2+} ions to the exchange-coupled Ni^{2+} pairs occurs at temperatures below 40 K.

Keywords: Ni_cMg_{1-c}O; Exchange-coupled Ni²⁺ ions; X-ray absorption spectroscopy

The optical absorption and luminescence spectra of the Ni_cMg_{1-c}O single crystals were measured at liquid nitrogen temperature (Fig. 1). These spectra in the energy range 7800-8300 cm⁻¹ correspond to $^3A_{2g} \rightarrow {}^3T_{2g}$ magneto-dipole transition at Ni²⁺ sites and consist of two zero-phonon lines (E and T) at 8005 and 8182 cm⁻¹. Previously, these two lines have been explained by the spin-orbit splitting [2]. However, according to the theoretical calculations [2], there should be four zero-phonon lines at 8011, 8177, 8563 and 8720 cm⁻¹ with the relative intensities equal to 0.677, 1.000, 0.790 and 0.235, respectively, while only two of the above-mentioned lines with the relative intensities equal to 0.645, 1.000 were observed in the experiment. We suggest that these lines are due to the splitting of the ³T_{2g} state by a crystal field acting on Ni ions located at the off-center positions. This conclusion is supported by X-ray absorption spectroscopy

^{*} Corresponding author. Tel.: +37-1-2944670; fax: +37-1-7901212; e-mail (Internet): xas@acad.latnet.lv.

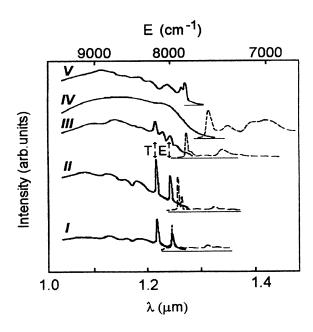


Fig. 1. Optical absorption at T=80 K (solid lines) and luminescence at T=10 K (dashed lines) spectra of Ni²⁺ ions in single crystals Ni_cMg_{1-c}O (I - c=0.01, II - c=0.05, III - c=0.1, IV - c=0.6, V - c=1.0) measured at T=15 K.

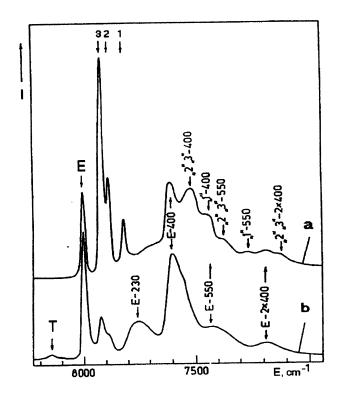


Fig. 2. The luminescence spectra of Ni^{2+} in the region of ${}^3T_{2g} \rightarrow {}^3A_{2g}$ transition at 40 K (a) and 80 K (b) in $Ni_{0.05}Mg_{0.95}O$ solid solution.

(XAS) [1]: it shows that Ni ions in $Ni_cMg_{1-c}O$ solid solutions shift upon dilution to the off-center positions so that the Ni–Ni distance remains nearly constant [1].

Additional sharp lines at 7822,7888,7921 and $7937 \, \mathrm{cm}^{-1}$ appear at the Ni concentrations 0.01 < c < 0.2. They correspond to the zero-phonon transitions supporting the presence of the exchange-coupled $\mathrm{Ni^{2+}}-\mathrm{Ni^{2+}}$ pairs. The maximum number of isolated pairs appears at c=0.05 [3]. Theoretical calculations of the energy levels in the ground and excited states [3] show that the observed sharp lines can be attributed to the so-called '90°-pairs'. Their presence is strongly supported by the XAS results [1].

Temperature variation of the luminescence spectra of Ni^{2+} in the region of ${}^3T_{2g} \rightarrow {}^3A_{2g}$ transition in $Ni_{0.05}Mg_{0.95}O$ solid solution is shown in Fig. 2. Here the peaks below $\sim 7800 \text{ cm}^{-1}$ correspond to the

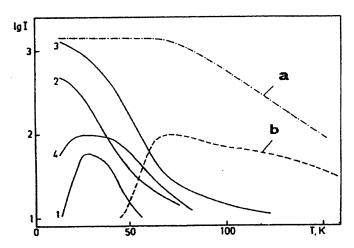


Fig. 3. Temperature dependence of the intensity of zero-phonon luminescence lines: (a) zero-phonon $E(^3T_{2g}) \rightarrow {}^3A_{2g}$ transition in a single Ni^{2+} ion in $Ni_{0.01}Mg_{0.99}O$; (b) as in (a) for $Ni_{0.05}Mg_{0.95}O$; (1)–(4) zero-phonon transitions in pairs of Ni^{2+} ions in $Ni_{0.05}Mg_{0.95}O$.

phonon transitions. One should point out a redistribution of the zero-phonon lines intensity for the single Ni²⁺ ions (peaks T and E) and the exchange-coupled Ni²⁺–Ni²⁺ pairs (peaks 1, 2 and 3). In Ni_{0.01}Mg_{0.99}O, where the number of the exchange-coupled pairs is relatively small, the intensity of the zero-phonon line for the single Ni²⁺ ions remains constant below 70 K and decreases exponentially above 100 K (curve (a) in Fig. 3). In Ni_{0.05}Mg_{0.95}O, where the exchange-coupled pairs are present (curves 1–4 in Fig. 3), the intensity of the zero-phonon line for the single Ni²⁺ ions is absent below 40 K (curve (b) in Fig. 3) and it increases when the intensity of the lines for the exchange-coupled pairs decreases.

References

- [1] A. Kuzmin, N. Mironova, J. Purans and A. Rodionov, J. Phys.: Condens. Matter 7 (1995) 9357–9367.
- [2] K.Y. Wong, D. Sengupta and E.R. Krausz, Chem. Phys. Lett. 21 (1973) 137–139.
- [3] G.A. Grinvald and N.A. Mironova, Phys. Stat. Sol. B 99 (1980) K101-K103.