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The one-magnon (1M) and two-magnon (2M) contributions were
studied in optical absorption spectra of KNiF3 single crystal, measured
in the temperature range from 5 K to 300 K. The three absorption bands
were considered in details. The first band is due to the magnetic-dipole
transition *Az(F) — 3ng(F), centred at 7700 cm™, and contains the
Brillouin zone-centre one-magnon contribution with the energy oim =
255 cm . The other two bands are due to the electric-dipole
transmons Azg(F) —> Eg(D) and Azg(F) - Eg(G), centred at 16000
cm” and 31200 cm’, respectively. Both bands contain the Brillouin
zone-b?undary two-magnon contribution with the energy w,y = 813 +
10cm™.
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INTRODUCTION

Potassium nickel fluoride, KNiF3, is a cubic perovskite with the lattice
parameter a = 4.014 A at T = 298 K. It orders antlferromagnetlca.lly
below the Néel temperature Ty = 253 K ['] (246 K [?], 275 K [ ]) The
superexchange interactions couple nearest-neighbour (NN) Ni** ions (S
= 1), located at opposite magnetic sublattices, by the exchange energy
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Jan =~ 70 cm™ [*). In the antiferromagnetic phase, the spins at nickel
ions are aligned parallel to <111>, and their excitation spectrum has
been studied 1n the past by electron spin resonance (ESR)
measurements [’], far-infrared [*°], optical [] and Raman [*7]
spectroscopies and Brillouin scattering measurements [® ] However, the
question on the one-magnon excitations in KNiF; remains open In the
past, they were identified with the far-infrared peak at 48.7 cm™ [*]. But
it was shown recently that the mode at 48.7 cm™ is not magnetic in
origin, and the far-infrared and ESR absorptlon mode at 2.54 cm™ was
related to the one-magnon processes [*]. The attempts to identify the
magnon contributions in optical absorption spectra were unsatisfactory

"1

In our previous low-temperature studies [’], a comparative
analysis of the magnetic-dipole band >A,(F) — 3Tae(F) in KNiF3 and
NiO allowed us to conclude that a zero-phonon line splitting can be
attributed to the one-magnon absorption. In this work, we present
temperature dependent optical absorption studies of KNiF; single
crystal and extend our previous results on the magnetic-dipole band to
two electric-dipole bands, containing contributions from two-magnon
processes.

EXPERIMENTAL

Temperature dependent optical absorption measurements were
performed on a transparent bright-green single crystal sample of KNiF;
having the size 6x6x1 mm?>. The spectra were recorded in the energy
range from 2500 nm to 190 nm with the spectral resolution 0.1 nm
using the split-beam Jasco spectrophotometer (Model V-570).
Deuterium discharge tube and tungsten iodine lamp were used as a
source in the ranges from 190 nm to 350 nm and from 330 nm to 2500
nm, respectively. A photomultiplier tube and PbS photoconductive cell
were used as a detector in the ranges from 190 nm to 900 nm and from
800 nm to 2500 nm, respectively. The temperature of the samples was
varied in the temperature range from 5 K to 300 K (1 K) using a liquid
helium cryostat.
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FIGURE 1 The absorption spectrum of KNiFj single crystal at
5 K. The electronic transitions are indicated by arrows.
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FIGURE 2 The low-energy side of the magnetic-dipole
transition >Agg(F) — *Tae(F) band in KNiF; at 6 K (line) and
77 K (circles). The pure exciton and exciton-magnon
transitions are labelled by A and B, respectively.
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FIGURE 3 Temperature dependence of the optical absorptlon
umuo‘nrdib Tatht 'ortﬁc'ﬁ&’cﬁ ﬁ}fm‘pmc‘tmﬂsxtmns *nrg‘(‘ po=m
- ST Eg(D) (lett pan€l ) and Azguf}‘—> Ey(G) ngnt’ ‘panel).
The intervals between pure exciton and exciton—two-
magnon transitions are indicated.

RESULTS AND DISCUSSION

Optical absorption spectrum of KNiF; single crystal at 5 K is shown in
Fig. 1. The absorptlon bands are assigned following the energy levels
diagram for Ni**(3d®) ion in a cublc crystal field with Dg = 766 cm™ [°].
The first band centred at 7700 cm’, has the magnetic-dipole nature and
is due to the Azg(F) - ng(F) transition. All other bands arise from
vibrationally induced electric-dipole transmons Further we will discuss
two of them, correspondmg to the transitions Azg(F) - IEF(D), centred
at 16000 cm™, and 3Azg(F) - Eg(G), centred at 31200 cm

The magnetlc-dlpole band has a broad shape with ﬁne vibrational
structure and two sharp peaks, denoted by A and B and located at the
low energy side of the band (Fig. 2). These peaks are the so-called zero-
phonon lines, corresponding to the pure exclton transition (peak A) and
the exciton-magnon excitation (peak B) [’]. The peak B is not visible
already at 77 K because of a decrease of long-range magnetic
correlations ['°]. The energy difference of about 25 cm™ between the
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two peaks is related to the zone-centre one-magnon energy @y and can
be used to estimate the Jun value. We take the effective anisotropy field
Ha=0.75 cm™ as in NiO ['"] and (01m)* =2 An Sz Ha+ (HaY' z=6
is the number of magnetic NN), then Jan=69.4 cm™.

The band at 16000 cm’, due to the electnc-dlpole transition
transitions 3Azg(F) - Eg(D) has several peaks, labeled from a to h in
Fig. 3 (left panel? Note that the intense peak h has not been identified
for many years ['*], and very weak peaks d and f are observed for the
first time in the present work. The pure exciton transition is forbidden
and thus is attributed to the small peak a. The set of peaks from b to g is
due to the phonon assisted absorption ['): their energies are in good
agreement with infrared active optical modes ['21]. The strong peak h
is related to the exciton—two-magnon excitation. Upon temperature
increase, the peak position shifts to lower energies and the intensity
decreases (Fig. 3): it completely disappears at about the Néel
temperature. The energy wam = 813 cm of the zone-boundary two-
magnon excitation is determined by the difference between the peaks h
and a.

Similar two-magnon contribution is observed in the electric-
dipole transition >A,(F) — 'E4(G) at about 31200 cm™ (right panel in
Fig. 3). The peak shows close behavior with temperature increase and
also disappears at about the Néel temperature. Note that the estimated
two-magnons energy My is equal to about 11.7/n.

CONCLUSIONS

In the present work we report on the temperature dependent optical
absorption measurements of KN1F3 single crystal Three absorption
bands, due to the magnetlc-dxpole Azg(F) - ng(F) transition and two
electnc-dlpole 3Azg(F') - Eg(D) and Azg(F) - Eg(G) transitions are
considered in details. Particular attention was devoted to the magnon
contributions. The Brillouin zone-centre one-magnon assisted
absorption with the magnon energy oy =255 cm™ was found in the
magnetic-dipole band, whereas two electric-dipole bands contain the
Brillouin zone-boundary two-magnon contribution with the energy wam
=813+ 10cm™
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