ONE- AND TWO-MAGNON CONTRIBUTIONS IN OPTICAL SPECTRA OF KNif $_3$ SINGLE CRYSTAL

N. MIRONOVA-ULMANE ^a, V. SKVORTSOVA ^a, A. KUZMIN ^a, I. SILDOS ^b

^a Institute of Solid State Physics, University of Latvia, Kengaraga street 8, LV-1063 Riga, Latvia ^b Institute of Physics, Riia street 142, EE-2400 Tartu, Estonia

(Received in final form April 15, 2001)

The one-magnon (1M) and two-magnon (2M) contributions were studied in optical absorption spectra of KNiF₃ single crystal, measured in the temperature range from 5 K to 300 K. The three absorption bands were considered in details. The first band is due to the magnetic-dipole transition ${}^3A_{2g}(F) \rightarrow {}^3T_{2g}(F)$, centred at 7700 cm⁻¹, and contains the Brillouin zone-centre one-magnon contribution with the energy $\omega_{1M} = 25 \pm 5$ cm⁻¹. The other two bands are due to the electric-dipole transitions ${}^3A_{2g}(F) \rightarrow {}^1E_g(D)$ and ${}^3A_{2g}(F) \rightarrow {}^1E_g(G)$, centred at 16000 cm⁻¹ and 31200 cm⁻¹, respectively. Both bands contain the Brillouin zone-boundary two-magnon contribution with the energy $\omega_{2M} = 813 \pm 10$ cm⁻¹.

Keywords KNiF3; magnons; optical absorption.

INTRODUCTION

Potassium nickel fluoride, KNiF₃, is a cubic perovskite with the lattice parameter a = 4.014 Å at T = 298 K. It orders antiferromagnetically below the Néel temperature $T_N = 253$ K [1] (246 K [2], 275 K [3]). The superexchange interactions couple nearest-neighbour (NN) Ni $^{2+}$ ions (S = 1), located at opposite magnetic sublattices, by the exchange energy

 $J_{\rm NN} \approx 70~{\rm cm}^{-1}~[^{1,4}]$. In the antiferromagnetic phase, the spins at nickel ions are aligned parallel to <111>, and their excitation spectrum has been studied in the past by electron spin resonance (ESR) measurements [5], far-infrared [5,6], optical [1,3] and Raman [4,7] spectroscopies and Brillouin scattering measurements [8]. However, the question on the one-magnon excitations in KNiF₃ remains open. In the past, they were identified with the far-infrared peak at 48.7 cm⁻¹ [6]. But it was shown recently that the mode at 48.7 cm⁻¹ is not magnetic in origin, and the far-infrared and ESR absorption mode at 2.54 cm⁻¹ was related to the one-magnon processes [5]. The attempts to identify the magnon contributions in optical absorption spectra were unsatisfactory [1,3].

In our previous low-temperature studies [9], a comparative analysis of the magnetic-dipole band $^3A_{2g}(F) \rightarrow {}^3T_{2g}(F)$ in KNiF $_3$ and NiO allowed us to conclude that a zero-phonon line splitting can be attributed to the one-magnon absorption. In this work, we present temperature dependent optical absorption studies of KNiF $_3$ single crystal and extend our previous results on the magnetic-dipole band to two electric-dipole bands, containing contributions from two-magnon processes.

EXPERIMENTAL

Temperature dependent optical absorption measurements were performed on a transparent bright-green single crystal sample of KNiF₃ having the size $6\times6\times1$ mm³. The spectra were recorded in the energy range from 2500 nm to 190 nm with the spectral resolution 0.1 nm using the split-beam Jasco spectrophotometer (Model V-570). Deuterium discharge tube and tungsten iodine lamp were used as a source in the ranges from 190 nm to 350 nm and from 330 nm to 2500 nm, respectively. A photomultiplier tube and PbS photoconductive cell were used as a detector in the ranges from 190 nm to 900 nm and from 800 nm to 2500 nm, respectively. The temperature of the samples was varied in the temperature range from 5 K to 300 K (±1 K) using a liquid helium cryostat.

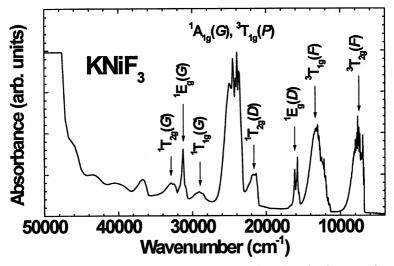


FIGURE 1 The absorption spectrum of KNiF₃ single crystal at 5 K. The electronic transitions are indicated by arrows.

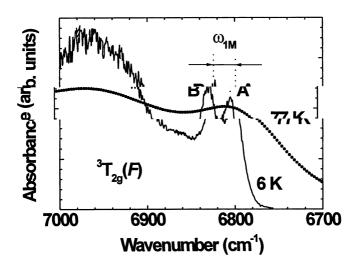


FIGURE 2 The low-energy side of the magnetic-dipole transition ${}^3A_{2g}(F) \rightarrow {}^3T_{2g}(F)$ band in KNiF₃ at 6 K (line) and 77 K (circles). The pure exciton and exciton-magnon transitions are labelled by A and B, respectively.

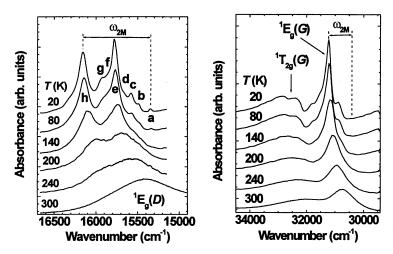


FIGURE 3 Temperature dependence of the optical absorption values hardwirethe for the field element irals, transiting $(A_{2g}(I^{1})^{2})^{-1}$ \rightarrow $E'_{g}(D)$ (left panel) and $A_{2g}(I^{1})^{2}$ $E'_{g}(G)$ (right panel). The intervals between pure exciton and exciton—two-magnon transitions are indicated.

RESULTS AND DISCUSSION

Optical absorption spectrum of KNiF₃ single crystal at 5 K is shown in Fig. 1. The absorption bands are assigned following the energy levels diagram for Ni²⁺(3d⁸) ion in a cubic crystal field with Dq = 766 cm⁻¹ [⁹]. The first band, centred at 7700 cm⁻¹, has the magnetic-dipole nature and is due to the ${}^3A_{2g}(F) \rightarrow {}^3T_{2g}(F)$ transition. All other bands arise from vibrationally induced electric-dipole transitions. Further we will discuss two of them, corresponding to the transitions ${}^3A_{2g}(F) \rightarrow {}^1E_g(D)$, centred at 16000 cm⁻¹, and ${}^3A_{2g}(F) \rightarrow {}^1E_g(G)$, centred at 31200 cm⁻¹.

The magnetic-dipole band has a broad shape with fine vibrational structure and two sharp peaks, denoted by A and B and located at the low energy side of the band (Fig. 2). These peaks are the so-called zero-phonon lines, corresponding to the pure exciton transition (peak A) and the exciton-magnon excitation (peak B) [9]. The peak B is not visible already at 77 K because of a decrease of long-range magnetic correlations [10]. The energy difference of about 25 cm⁻¹ between the

two peaks is related to the zone-centre one-magnon energy $\omega_{\rm IM}$ and can be used to estimate the $J_{\rm NN}$ value. We take the effective anisotropy field $H_{\rm A}=0.75~{\rm cm}^{-1}$ as in NiO [11] and $(\omega_{\rm IM})^2=2~J_{\rm NN}~S~z~H_{\rm A}+(H_{\rm A})^2~(z=6)$ is the number of magnetic NN), then $J_{\rm NN}=69.4~{\rm cm}^{-1}$. The band at 16000 cm $^{-1}$, due to the electric-dipole transition

The band at 16000 cm⁻¹, due to the electric-dipole transition transitions ${}^3A_{2g}(F) \rightarrow {}^1E_g(D)$, has several peaks, labeled from a to h in Fig. 3 (left panel). Note that the intense peak h has not been identified for many years $[^{1,3}]$, and very weak peaks d and f are observed for the first time in the present work. The pure exciton transition is forbidden and thus is attributed to the small peak a. The set of peaks from b to g is due to the phonon assisted absorption $[^{10}]$: their energies are in good agreement with infrared active optical modes $[^{12,13}]$. The strong peak h is related to the exciton—two-magnon excitation. Upon temperature increase, the peak position shifts to lower energies and the intensity decreases (Fig. 3): it completely disappears at about the Néel temperature. The energy $\omega_{2M} = 813$ cm⁻¹ of the zone-boundary two-magnon excitation is determined by the difference between the peaks h and a.

Similar two-magnon contribution is observed in the electric-dipole transition ${}^3A_{2g}(F) \rightarrow {}^1E_g(G)$ at about 31200 cm⁻¹ (right panel in Fig. 3). The peak shows close behavior with temperature increase and also disappears at about the Néel temperature. Note that the estimated two-magnons energy ω_{2M} is equal to about 11.7 J_{NN} .

CONCLUSIONS

In the present work we report on the temperature dependent optical absorption measurements of KNiF₃ single crystal. Three absorption bands, due to the magnetic-dipole ${}^3A_{2g}(F) \rightarrow {}^3T_{2g}(F)$ transition and two electric-dipole ${}^3A_{2g}(F) \rightarrow {}^1E_g(D)$ and ${}^3A_{2g}(F) \rightarrow {}^1E_g(G)$ transitions are considered in details. Particular attention was devoted to the magnon contributions. The Brillouin zone-centre one-magnon assisted absorption with the magnon energy $\omega_{1M} = 25 \pm 5$ cm⁻¹ was found in the magnetic-dipole band, whereas two electric-dipole bands contain the Brillouin zone-boundary two-magnon contribution with the energy $\omega_{2M} = 813 \pm 10$ cm⁻¹.

Acknowledgements

This work was partially supported by the grants of the Latvian Government (No. 96.0412 and 96.0670) and the Estonian Science Foundation (No. 3453).

References

- S.R. Chinn, H.J. Zeiger and J.R. O'Connor, <u>Phys. Rev. B</u>, 3, 1709 (1971).
- 2. J. Nouet, A. Zarembowitch, R.V. Pisarev, J. Ferre and M. Lecomte, Appl. Phys. Lett., 21, 161 (1972).
- 3. J. Ferguson, H.J. Guggenheim and D.L. Wood, <u>J. Chem. Phys.</u>, **40**, 822 (1964).
- 4. P.A. Fleury, W. Hayes and H.J. Guggenheim, <u>J. Phys. C: Solid State Phys.</u>, **8**, 2183 (1975).
- H. Yamaguchi, K. Katsumata, M. Hagiwara, M. Tokunaga, H.L. Liu, A. Zibold, D.B. Tanner and Y.J. Wang, <u>Phys. Rev. B</u>, 59, 6021 (1999).
- 6. P.L. Richards, J. Appl. Phys., 34, 1237 (1963).
- 7. R.E. Dietz, W.F. Brinkman, A.E. Meixner and H.J. Guggenheim, Phys. Rev. Lett., 27, 814 (1971).
- 8. F. Ganot, S. Dugautier, P. Moch and J. Nouet, <u>J. Appl. Phys.</u>, **52**, 2289 (1981).
- N. Mironova, V. Skvorcova, A. Kuzmin, I. Sildos and N. Zazubovich, in NATO Sci. Ser. "Defects and Surface-Induced Effects in Advanced Perovskites", eds. G. Borstel et al., (Kluwer, Amsterdam, 2000) 155.
- 10. N. Mironova-Ulmane, V. Skvortsova, A. Kuzmin and I. Sildos, to be published.
- 11. C.R. Becker, Ph. Lau, R. Geick and V. Wagner, <u>Phys. Stat. Sol. (b)</u>, **67**, 653 (1975).
- 12. A.S. Barker, Jr., J.A. Ditzenberger and H.J. Guggenheim, <u>Phys.</u> <u>Rev.</u>, 175, 1180 (1968).
- 13. Y. Tomono, T. Takaoka, M. Yajima, Y. Tanokura and N. Jinda, <u>J. Phys. Soc. Jpn.</u>, **59**, 579 (1990).