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The one-magnon Raman scattering was studied for the first time in antiferromagnetic NicMg1–cO solid so-
lutions as a function of temperature and composition. We found that (i) the one-magnon frequency ex-
trapolated to T = 0 K experiences an abrupt change between c = 0.99 and c = 0.9 and (ii) the one-magnon 
energy for highly diluted nickel oxide vanishes significantly below the Nèel temperature. The obtained 
dependences are compared to the theoretical predictions within the mean field approximation. 
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NicMg1–cO solid solutions represent an example of diluted antiferromagnetic system with the rock-salt 
structure, whose lattice constant varies close to the Vegard’s law [1].  Their magnetic phase diagram was 
established in the past by the magnetic susceptibility measurements [2], neutron scattering [3] and 
SQUID magnetometry [4]. Pure NiO is a type-II antiferromagnet (AF2), which becomes paramagnetic 
above the Néel temperature TN = 523 K [5]. On the other side, pure MgO is a diamagnet. In NicMg1–cO 
solid solutions several particular regions can be found upon cooling from paramagnetic phase [3]: the 
region of homogeneous antiferromagnet exists for 0.63 ≤ c < 1, the frustrated antiferromagnet is ob-
served for 0.4 ≤ c < 0.63, and the cluster spin-glass for 0.25 ≤ c < 0.4. For c < 0.25, NicMg1–cO solid solu-
tions remain in paramagnetic state at all temperatures [3]. 
 The antiferromagnetic structure of NiO and NicMg1–cO solid solutions is determined by dominating 
superexchange interactions (JNNN ≈ 150 cm–1 for pure NiO [6,7]) in the linear atom chains Ni2+–O2––Ni2+ 
between next-nearest-neighbours (NNN). The magnons dispersion curves have been obtained by inelas-
tic neutron scattering only for pure NiO [6]. Here two modes at ~36.6 cm–1 and ~8 cm–1 are observed 
close to the Brillouin zone-centre (BZC) and correspond to antiferromagnetic resonance (AFMR) out-of-
plane and in-plane modes [6]. At the same time, the modes dispersion at the Brillouin zone-boundary 
(BZB) is relatively narrow and peaks in NiO at ~887 cm–1 [6]. 
 The magnon excitations in pure NiO have been intensively studied previously by Raman spectros-
copy. In particular, the one-magnon [8–11], two-magnons  [7, 8, 12–14] and four-magnons [13] scatter-
ing has been detected. The observed temperature dependence of the one-magnon scattering is in agree-
ment with the theoretical predictions for the BZC magnon frequency [15, 16]. Temperature dependence 
of the two-magnon scattering has been studied in [12] and is attributed to the excitation of two BZB 
magnons [17]. The four-magnons scattering is very weak and has been observed at 1.5 K only in [13]. 
Besides, pressure dependence of the one-magnon [11] and two-magnon [7] scattering in NiO has been 
also studied and is explained by a variation of the dominating NNN exchange energy JNNN as a function 
of the lattice constant. 
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 The magnetic excitations in diluted nickel oxide have been studied to our knowledge only in two 
works [14, 18]. In [18], the two-magnon Raman scattering has been measured in calcium doped NiO 
with calcium content up to 6 mol.%. It was found [18] that upon dilution the position and shape of the 
two-magnon band follow the expected behaviour [15, 16]. In our recent work on NicMg1–cO solid solu-
tions [14], the dependence of the two-magnon band on the composition and temperature has been studied 
by Raman spectroscopy in a wide range of compositions (0.3 < c < 1) and temperatures (10–300 K). The 
observed variation of the two-magnon scattering was found to be consistent with the magnetic phase 
diagram of NicMg1–cO system [3].  
 In the present work we extend our previous studies to the case of the one-magnon Raman scattering in 
NicMg1–cO solid solutions as a function of composition and temperature.  
 A set of polycrystalline and single-crystal NiO and NicMg1–cO (c = 0.99, 0.90, 0.80, 0.60) solid solu-
tions was prepared (i) using ceramic technology from the appropriate amounts of aqueous solutions of 
Mg(NO3)2⋅6H2O and Ni(NO3)2⋅6H2O  salts and (ii) by the method of chemical transport reactions using 
HCl gas as the transport medium [19]. Thus obtained samples were green coloured. The chemical com-
position of solid solutions was controlled by instrumental neutron-activated analysis [20], and it was 
confirmed that the content of nickel in the samples was in agreement with the stoichiometric one within 
±0.01%.  
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 Raman experiments were performed using standard macro-Raman setup with a right angle scattering 
geometry in zero magnetic field. The samples were mounted in a liquid helium flux cryostat, and the 
temperature was varying in the range from 10 to 400 K with the accuracy ±2 K. The Raman spectra were 
excited by the 514.5 nm line of an argon laser, with a nominal power of 100 mW at the cryostat window. 
The scattered radiation was focused at the entrance slit of an one-meter focal length double mono-
chromator (Jobin-Yvon, model Ramanor HG2-S), mounting concave holographic gratings  
(2000 grooves/mm). The experimental resolution was of the order of 3 cm–1. The filtered radiation was 

Fig. 1 Temperature dependence of the one-magnon 
Raman scattering (the Stokes part) in Ni0.8Mg0.2O solid 
solution. 

Fig. 2 Temperature dependence of the one-magnon 
frequency ω1M in NiO and NicMg1–cO solid solutions. 
Dashed lines are guides for eye. 
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detected by a cooled (–35 °C) photomultiplier tube (RCA, model C31034A-02), operated in photon 
counting mode. The signal was stored into a multichannel analyzer and then sent to a microcomputer for 
the analysis. The Raman spectra were recorded at 0.5 cm–1 spectral steps from -80 to 90 cm–1, thus includ-
ing both anti-Stokes (magnon annihilation) and Stokes (magnon creation) parts. 
  The representative Raman spectra are shown in Fig. 1 for Ni0.8Mg0.2O solid solution. Here the one-
magnon contribution can be detected up to about 270 K, and  the one-magnon frequency extrapolated to 
T = 0 K is about 26±1 cm–1. As it is expected, the one-magnon frequency decreases and the peak progres-
sively broadens upon increasing temperature. The extrapolation of the temperature dependence of the 
one-magnon frequency to ω1M = 0 gives the critical temperature TC ≈ 300 K, that is much smaller than the 
Néel temperature TN(c=0.8) ≈ 420 K [3].  
 Temperature dependences of the one-magnon energy ω1M in NiO and NicMg1–cO solid solutions are 
shown in Fig. 2. Note that our results for pure NiO are in good agreement with that of [8–10]. The dilu-
tion of nickel oxide with magnesium ions leads to a decrease of the one-magnon frequency. However, as 
one can see in Fig. 2, this decrease is not uniform. In the limit of T → 0 K, the one-magnon frequency is 
nearly unchanged for c ≥ 0.99, after that an abrupt lowering of the ω1M value occurs for c = 0.90, but no 
significant variation of ω1M is found for 0.6 < c < 0.9. In fact, the one-magnon frequency for the samples 
with c = 0.6, 0.8 and 0.9 falls within the interval 27±3 cm–1. 
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Fig. 3 Composition dependence of the one-magnon frequency in the limit of T → 0 K in NiO and NicMg1–cO solid 
solutions. The solid line is theoretical prediction for ω1M = (2ωEωA + ωA

2)1/2 (see text for details). Two dashed lines 
show an error bar due to an inaccuracy of the exchange constant JNNN and the anisotropy frequency ωA [6]. 
 
 The one-magnon frequency in zero magnetic field is given by ω1M = (2ωEωA + ωA

2)1/2 [21], where  
ωE = zSJNNN is the exchange frequency, ωA is the single-ion out-of-plane anisotropy frequency, z is the num-
ber of the magnetic neighbours and S is the spin. In the case of solid solutions, the conventional approach 
is to substitute z with zc [22], so that ωE = zcSJNNN. The result of such calculation for NicMg1–cO is shown 
in figure 3 by solid line. Here we used  S = 1,  z = 6, JNNN = 153±3 cm–1 [6] and ωA = 0.785±0.03 cm–1 [6]. 
As one can see, the predicted dependence of the one-magnon frequency on the composition deviates 
significantly from our experimental observations. 
 Another interesting result, found in NicMg1–cO solid solutions, is related to the dependence of the criti-
cal temperature TC, at which ω1M(TC) → 0, on the composition. In pure NiO, TC for the one-magnon fre-
quency is close to the Néel temperature TN (Fig. 2). However, our results clearly indicate that in solid 
solutions with c = 0.6 and c = 0.8, TC is about 100 K smaller than TN. Close behaviour for one-magnon 
excitation was observed recently for joint exciton–one-magnon transition in the region of the magnetic-
dipole 3A2g(G) → 3T2g(F) optical absorption band in NicMg1–cO single-crystals [23]. However, in the  
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latter case, the intensity of the one-magnon assisted transition decreases rapidly with increasing magne-
sium ion concentration and/or temperature: it vanishes at T = 6 K for c < 0.95 and at T = 130 K for  
c ≥ 0.99 [23], even faster than in the present Raman results, due to an additional broadening of the exci-
ton excitation. One should note also that in the case of Fe1–xZnxF2 solid solution the one-magnon Raman 
scattering was observed at least up to the Néel temperature [22]. Therefore, it can be concluded that the 
one-magnon scattering in NicMg1–cO solid solutions is very sensitive to the destruction of the long-range 
magnetic ordering with increasing concentration of the diamagnetic magnesium impurity ions. 
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