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The solid solutions (Ni, _ ,Mg, )O are used as an example to show, for the first
time, that a random substitution of magnesium ions in the nickel sublattice is
manifested as a random-magnetic-field effect. This effect first causes a local
magnetic disorder and then leads to a complete disruption of the long-range
magnetic order in a topologically infinite antiferromagnetic cluster. A region of
tricritical behavior and a cluster spin glass appears.

According to Imry and Ma,! a magnetically ordered state with continuous sym-
metry is unstable with respect to an arbitrarily weak random disordering field in a
space of dimensionality n>2. Serving as this random field might be various distortions
of real systems, e.g., an impurity with an antiferromagnetic interaction in a ferromag-
netic matrix or a uniform external magnetic field in a diamagnetically dilute antiferro-
magnet.> Proof that the long-range magnetic order is disrupted by a random field
comes from the experimental observation of a broadening of coherent magnetic reflec-
tions® and a lowering of the Néel point* in diamagnetically dilute antiferromagnets in a
uniform magnetic field.

In the present letter we offer evidence that the diamagnetic impurities can them-
selves serve as sources of random magnetic fields, by virtue of the formation of a local
magnetic field at the diamagnetic ion. This field is directed opposite the local molecu-
lar field, which is in turn random by virtue of the nonuniform distribution of magnetic
ions in the nearest neighborhood of the impurity. A disruption of the long-range
antiferromagnetic order upon diamagnetic dilution has been established in many cases
(see, for example, Refs. 5 and 6), but there has been no evidence in favor of the
identification of a diamagnetic impurity as a random field. We present such evidence
in the present letter, using as an example the effect of a diamagnetic Mg impurity on
the antiferromagnetic order in NiO.

The (Ni; _ Mg, )O system, which is a continuous series of solid solutions with a
lattice of the NcCl type, was studied by neutron diffraction and SQUID magneto-
metry. The test samples were prepared by sintering powders of the constituent oxides.
The test samples had the compositions x = 0.1, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8,
and 0.9. The neutron-diffraction measurements were carried out over the temperature
range 4.2-600 K on a diffractometer (4 = 1.81 A) installed in a horizontal channel of
an IVV-2M reactor. The reversible and irreversible susceptibilities of the test samples
were measured over the temperature range 1.5-300 K with a SQUID magnetometer in
very weak magnetic fields (~1 mT).

For all the solid solutions with concentrations x<0.6 we found identical neutron-
diffraction patterns. These patterns contained a family of magnetic reflections with a

726 0021-3640/90/120726-05%$01.00 © 1990 American Institute of Physics 726




111) parent reflection. From the temperature dependence of this reflection we found
the Néel temperature T of the test samples, and from data on the intensities of the
magnetic reflections at 4.2 K we found the average magnetic moment per atom, x,
under the assumption of a magnetic structure with a wave vector k = (27/a)(} 1,4
(Ref. 7).

Working from the results of these measurements, we constructed a magnetic
phase diagram of the (Ni, _ Mg, )O solid solutions (Fig. 1). On this diagram there
are regions of uniform and nonuniform antiferromagnetism and also a region of a spin-
glass state. For the uniform antiferromagnetism (0<x<0.37), Ty and z typically are
linear functions of the concentration. In addition, one can visually observe a domain
structure on the single crystals of these compositions, because of the existence of a
magnetic birefringence, which arises from a spontaneous deformation of the lattice.’
The concentration dependence of the Néel temperature is described well in this com-
position region by the following expression, which was found from a calculation of the
total energy of the exchange-interacting ion pairs:
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FIG. 1. Bottom: Magnetic phase diagram. Top: Concentration dependence of the average magnetic moment
for (Ni, _,Mg,)O solid solutions. O, A—Data of present study, found by neutron diffraction; @—data
found; by SQUID magnetometry. + —Temperature at which the magnetic susceptibility reaches a maxi-
mum according to the measurements of Ref. 8. x—the temperatures up to which a good antiferromagnetic
domain structure is observed.” Solid lines) Lines of first-order phase transitions; dashed lines) lines of
second-order phase transitions; TCP) tricritical point.
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where Z; is the effective number of neighbors, J; is the effective exchange integral,

and Sy; is the spin of the nickel ion. A similar expression can be derived from the
mean-field theory.

The agreement between expression (1) and the experimental data at x<0.37
means that here we have J ;S %, = const. Furthermore, it can be concluded from the
weak dependence of the lattice constant on the concentration (dygo =4.215 A,
anio = 4.175 A) that the effective exchange integral and the total magnetic moment of
the nickel ions, py;, are also constants. Nevertheless, we see from Fig. 1 that the
average magnetic moment does not satisfy the relation fi(x) = py; (1 — x). There is a
reason for this circumstance. In order to describe the z(x) observed experimentally,
we need to use a different expression:

px) = ppgy(1 —x) — Mx, (2)

where M is a magnetic moment, antiparallel to the direction of i, which is induced
at the magnesium ions. Its value, M = 0.35u, is found through a linear extrapolation
of the experimental results to x = 1. Its physical meaning follows directly from the
idea of a random magnetic field, as we will now show.

A magnesium ion which replaces a nickel ion cannot be regarded as simply a
nonmagnetic atom. Since the electron orbits of the Mg atom rotate around the local
mean field, a magnetic field in the opposite direction is produced at the position of this
ion. This oppositely directed magnetic field is random with respect to the magnetic
order of the matrix because the nickel ions can have more than one type of nearest
neighborhood. For magnesium concentrations x<0.37 the random fields disrupt the
magnetic order of the spins in the nearest neighborhood of the diamagnetic ion, which
leaving the topologically infinite antiferromagnetic cluster unchanged. The concentra-
tion x, = 0.37, however, is critical with respect to the breakup of this infinite cluster
into clusters of finite size. At this concentration T (x) and @i(x) begin to deviate from
linearity; these deviations correspondingly signify the appearance of a certain number
of atomic spins which are not involved in either the formation of exchange-coupled
pairs or the coherent scattering of neutrons.

On the basis of this behavior of the magnetic properties, we can identify the point
Ty =325 K, x =0.37 on the phase diagram as a tricritical point. According to the
theory of Ref. 10, the line of second-order phase transitions in the coordinates T-x
converts into two lines of first-order phase transitions at this point. Between these two
lines, high-symmetry and low-symmetry phases coexist (in the case at hand, these are
paramagnetic and antiferromagnetic phases). From the thermodynamic standpoint,
the reason for the appearance of this point lies in the interaction of vector and scalar
order parameters. Serving as the scalar order parameter here is an elastic distortion of
the lattice, which is accompanied by a rhombohedral deformation of the cubic lattice
with a compressional axis along the 11 direction in the antiferromagnetic NiO. At a
concentration x> 0.37, the scalar order parameter disappears, since a domain struc-
ture is not observed (because there is no magnetic birefringence).

That a topologically infinite antiferromagnetic cluster is broken up into regions of
finite dimensions, between which paramagnetic spins exist, is confirmed by the very
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FIG. 2. Temperature dependence of the magnetic susceptibility for (Ni, _ Mg, )O solid solutions with
x = 0.5, 0.55, 0.8, and 0.9.

strong increase in the susceptibility below the Néel temperature in the samples with
x = 0.5, 0.55, and 0.6 (Fig. 2). For uniform antiferromagnets, there is no such in-
crease below 7T, (see the inset in Fig. 3).

Near the tricritcal point the size of the finite regions of antiferromagnetic order is
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FIG. 3. Temperature dependence of the reversible (open circles) and irreversible (filled circles) magnetic
susceptibility of (Ni, _ Mg, )O solid solutions. 1—Temperature of transition to spin-glass state, 7,5 I—
Néel temperature. The inset shows curves of y(T) from Ref. 8. [—x = 0; 2—0.1; 3—0.2; 4—-0.3; 5—0.4;
6—0.5; 7—0.6.
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still quite large, since there is no broadening of coherent reflections. At concentrations
x = 0.6-0.7, however, this size becomes comparable to the region of coherent neutron
scattering ( ~ 100-200 A). Finally, at x3>0.7 the magnetic reflections disappear entire-
ly. The irreversible features of the magnetic susceptibility become large here because of
the appearance of a magnetization of clusters with an odd number of antiferromagneti-
cally ordered planes (Fig. 3). The superantiferromagnetic state converts into a cluster-
spin-glass state below 7. At concentrations x > 0.8, however, we observe a paramag-
netic behavior of the oxide down to liquid-helium temperature (Fig. 2).
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