SCANNING μ X RAY EXCITED LUMINESCENCE IN SEMICONDUCTORS

Gema MARTINEZ-CRIADO ID22-ESRF

TALK OUTLINE

- Why luminescence?
- What is the connection with X ray microprobe?
- Design and setting up
- First tests and preliminary conclusions
- The XEOL upgrade some key points
- Next experiments

LIGHT EMISSION

Incandescence

- from a hot object -

Phosphorescence

- from a "cold" object -

Fluorescence

- fast emission decay (nsec) -

WHY LUMINESCENCE FROM SEMICONDUCTORS?

ADVANTAGES:

- Do not get specially hot
- Last much longer
- More durable because of their small plastic bulb
- Fit easily in electronic circuits
- Very HIGH EFFICIENCY
- LOWER COST in the long run

Dozens of different jobs:

Full-color screens

Indoor Lighting

Optical Data Storage

Automotive Displays

Gentronix: Blue laser light reveals cancer-causing chemicals using yeast cells

HOW CAN LUMINESCENCE BE STUDIED?

Chatodoluminescence electrons

Electroluminescence applied voltage

Tribo(mechano)luminescence stress, grinding

Bioluminescence biochemical energy

EXCITATION SOURCE

Chemiluminescence chemical reaction

Sonoluminescence sound waves

Thermoluminescence thermal stimulation

Photoluminescence Photons (VIS, IR, UV, X-rays)

WHAT DOES CONFINEMENT DO IN SEMICONDUCTORS?

HOW DOES CONFINEMENT CHANGE PHOTOLUMINESCENCE?

WHAT IS THE CONNECTION WITH X-RAY MICROPROBE?

ADVANTAGES:

- XEOL experiments are site selective (under favorable conditions)
- Energy tunability sampling in depth
- Sensitive to optical centers at low densities
- Imaging on micrometer scale:elements + optical centers
- Non-linear effects (bi-excitonic molecule,etc)
- Can be combined with other techniques:
 XRF, XRD.

WHAT DO WE NEED TO SET μ -PHOTOLUMINESCENCE UP ?

WHAT DOES AT LASER EXCITED LUMINESCENCE TELL US?

PHOTOLUMINESCENCE vs EXCITATION POWER

SCIENTIFIC & TECHNICAL LIMITS -> COST/PRICE RATIO

HR2000 Series High-Resolution
Fiber Optic Spectrometer

SPECTROMETER SPECIFICATIONS:

Grating: UV-VIS; Groove density: 600; Blaze@400nm

Collimating mirror: 0.22NA

Focal length: f/4, 101 mm; Entrance Aperture: 50 µm
Data Transfer rate: Full scans into memory every 13 msec

LINEAR CCD SI ARRAY SPECIFICATIONS.

Detector range: 200-1100nm

Pixel elements: 2048;

Signal-to-Noise: 260:1 (et full signal)

A/D Resolution: 12 bit

Dark Noise: 2.5 RMS counts

OPTICAL SYSTEM ALIGNMENT

SETUP OF SCANNING μ X-RAY EXCITED

SAMPLE STAGE AT EXPERIMENTS HUTCH 1:

ALIGNMENT PROCEDURE AT THE CONTROL CABINE BY MEANS OF MICROSCOPE CCD:

FIRST DATA

GaN:Mn/Al₂O₃; [Mn]=11%; AVERAGE PL SPECTRA TAKEN AT ~80 K:

Spectral analysis:

- Background luminescence from sapphire substrate
- High energy tail from the sapphire absorbed by GaN
- Both Al₂O₃- and GaN:Mn-related transitions are overlapping

- 2D electron-hole recombination: non-uniform pattern
- Energy positions remains constant over the map: no large stress variation
- Though different sampling depths, good agreement with XRF: inhomogeneous
 Mn incorporation

PL IMAGING BY CORE-LEVEL EXCITATION

Spatial PL analysis:

- Two kinds of optical shapes:
 - a few well-defined and sharp circular features
 - more recurrent structures horizontally elongated
- C: Mn–rich region absorbs the signal at2.55 eV from sapphire
- D: Mn clusters block and interfere the Cr-related line
- A,B: strong variation of radiative rates

High energy bands at 2.7–3.1 eV: seems to be specific from some Mn center location in the GaN surface.

BUT, poor lateral resolution

XEOL IN FREE STANDING GaN LAYER @ Ga K-EDGE

Spectral analysis:

- Broad emissions insensitive to excitation energy
- Blue band at 2.9 eV: tentatively attributed to oxygen complexes
- Green band at 2.45 eV: commonly attributed to defects
- Excitons with very low intensities

BUT, lower temperatures needed ...

... and better signal-to-noise ratio

THE NEAR FUTURE

The electronic states in III-V quantum heterostructures:

- Higher lateral resolution (NA)
- Extensions in wavelength
- Better signal-to-noise ratio

NIR WAVELENGTH DISPERSION

IN-LINE SAMPLE INSPECTION/ILLUMINATION

InGaAs COOLED MCD FOR IR LIGHT DETECTION

HELIUM MICRO-CRYOSTAT FOR XRF/XEOL MODES

UPGRADE IN PROGRESS

HE MICRO-CRYOSTAT

SPECTROMETER

CONCLUSIONS

- Scanning X-ray excited PL with micrometer resolution → feasible at ID22
- Alignment procedure → X-ray microbeam + Auxilliary laser spot
- GaN:Mn PL patterns → similar features probed by XRF mappings
- GaN XEOL on the micrometer scale → Successful
- Optical Detection Lateral Resolution → Needs improvements

XEOL IN NANOSCALE:

- Silicon nanowires PRB70_045313 (2004)
- Porous silicon →LANGMUIR 20,4690(2004), NATURE 363,331 (1993)
- CdS nanoparticles → JAP 91, 6038 (2002)
- Organic LED Materials → Rev Sci Instrum 73, 1379 (2002)
- CdSe quantum dots → JCG 214, 752 (2000)

COLLABORATORS

Benito ALEN

Andrea SOMOGYI

Claudio MISKYS
Martin STUTZMANN

Alejandro HOMS
Ricardo STEINMANN
Yves DABIN
Sylvain LABOURE
Jean SUSINI

